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Nuclear Theory - Course 227

CHANGES IN REACTOR POWER WITH TIME

Reactor kinetics is the study of how neutron power changes
wi th time. As ,:l preface to this discussion it must be recog­
nized that neutron density (n), neutron flux (¢), and neutron
power (P) are all related by physical or design constants such
that they all b4~have in a similar manner. Their relationships
are:

P = E'lL f¢
¢ = n'l

where:

p = nl~utron power
E = energy released per fission

Lf = the macroscopic fission cross section
</> = nl~utron flux
V = volume of the reactor
n = neutron density
v = a'Terage neutron velocity

Prompt Kinetics

First we shall examine the behaviour of a reactor without
delayed neutron!>. The change of the neutron density in one
generation is:

~n = kn - n

where:

kn =
n =
k =

the neutrons in one generation
tl~ neutrons in the preceding generation
neutron multiplication factor

The time period over which this takes place (~t) is one
...... _, ....... "....1""\_ 1; i=_~~-..... ~ 10'
.lJ.~u.'-.LVJ.L .L..L..LC .... ..L.1lLlII::; \.AJJ.

Thus:

1m kn - n
Kt = --2-

or:

dn
dt

kn - n
--2--

n k= T (k - 1) x k
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dn nk k - 1
dt

_.
T k

Recall that:

k - 1 l:.k=k

Normally k is very close to one so that:

We can now rewrite the equation as:

dn n ilk
dt I

=n(t)

The solution to this equation ~s:

Akt
-R,-

where:

no = original neutron density

Since both neutr~n flux and neutron power behave in a
similar manner we can write:

P(t) = (1)

Equation (1) shm...s that power changes exponentially with
time and that the ratle of change of power depends on the
reactivity (~k) and t::1e neutron lifetime (l).

Reactor Period

In operating reaGtors it is convenient to have an indication
of how long it takes :Eor power to change by a given amount (e.g.
how long it takes for power to double or increase by a certain
percentage) • The mOS1: common measure in Candu reactor is how
long it takes power to increase by a factor of e*. This time
interval is called thl! reactor period T (tau).

* e is the base for natural logarithms and is
used simply for mathematical convenience.
e = 2.7183
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To illustrate what the reactor period is, consider the
reactor power after one reactor period (ie, t = T).

P(T) = ePo (ie, power has increased by
a factor of e)

Also:

P (T)

6k T
T= Poe

Therefore:

Clearly:

6kTT
e = e

and:

1 = t\k
TT

T £=
~

(reactor period for a reactor
with only prompt neutrons)

Thus we car. rewrite equation (I) as:

t
Tpet) = Poe (2 )

Equation (~:) is a valid expression for power as a function
of time considering that we have only prompt neutrons.

To gain a feel for what this means, consider such a reac­
tor with ~k = 0.5 mk;

~ 0.001 s "
T = 0.0005 = ~ s

This means that, with the reactor only slightly super­
critical (k = 1.0005), power is increasing by a factor of e
('\, 270%) every ~: seconds. That is about 176% per second*.

*Do not confuse this with rate log N
which would be 50%/s for this example.
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This is an unacceptable rate of power change because it
would be mechanically impossible to build a regulating system
which could respond t~ such changes rapidly enough to safely
control the reactor. Fortunately the fission process produces
delayed neutrons which radically alter the time response from
that of prompt neutrons alone.

Effect of Delayed Neutrons

In Level 3 Nucle~r Theory we simply assumed that the de­
layed neutrons increased the average neutron lifetime. This
simple treatment is not only calculationally inaccurate but
it also fails to predict the physical way in which delayed
neutrons affect the reactor. A more complex treatment is
required for deeper understanding.

Again we will lo:>k at the time rate of change of the

neutron density ~~, which can be written as:

dn
dt = kn (1 - 6) +

~ "'~

n
-~

where:

Term 1 Term 2 Term 3
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Term 1 represents the production of prompt neutron
in the present generation

Term 2 represents the production of delayed neutrons
in the present generation

Term 3 represents the total neutrons in the preceding
generation

A = delayed neutron precursor decay constant

C = delayed neutron precursor concentration

with some mathematical manipulation:

dn n
(k(l 6) - 1) + ACdt = Q,

kn (k - k 8 - 1) + hCT k

= kn (k - 1
6) + AC-Q, \ k
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Finally:

dn kn
dt = ~ (~k - S) + AC (3 )

Equation (]) partially describes how 'n' is changing; how­
ever, AC is not a constant. We continually create delayed neu­
tron precursors while other precursors, created earlier, decay
to give us delayed neutrons. So we must describe how the pre­
cursor concentration changes:

precursor
creat~ion

rate

precursor
decay
rate

Recalling t~hat there are six groups of precursors you can
see that we would have seven simultaneous differential equa­
tions to solve.

For a calculationally accurate prediction of power changes,
these equations are solved on a computer. For the purpose of
understanding; however, we assume an average behaviour of the
delayed neutrom: which reduces the problem to solving two
equations with c. solution of the form:

P ( t) = A 0 E~ a 0 t + A I e a 1 t

If we assume:

a) ~k < S

b) a step change in ~k occurs at time zero

c) neutron der.sity was constant prior to the insertion of
reactivity.

The solutie,n (with certain approximations) is:

1st Term

pet) ~ P, ~~!-~~k- e
B - ~k t

B - ~k e

2nd Term

B - ~k

2
(4 )

A mathematical and graphical solution for a typical set of
conditions is shown on the next page.
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Assume typical values

B = 0.0065
Ak = 0.001 (1 rnk)

._ A . =O.~~ S:-:-l ·£~y~rage fo~ .al1...gre9urso:;- .groups): ..
: 'R, ='·0.001 s '.. , ..

. .' ....p (t)· =' [~.i~ e.~·· (l182 t._ ·O.lS· e· -5.5·. ~j .
.. . This· soi~<tibn·is 'plotted ~s ·fig1.i~e (1). .
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From this eX3.mple you can see that the second term
of equation (4) dies away rapidly. and can usually be ignored.

:1:£ ~e~.·d~ ~ ~e~~ec'b ·the .. ~e:~ond ~~fu ..~e . h'av~:' :. ~- .' - ..
'.. ' " ..

'"0 •

P(t) = B
s - ~k

. '.
(5 )

Graphically this simplified equation is:

P(t)
p

a
1

~Stable Period
Prompt Jump

L-r-~ _
time (s)
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This behaviour is called a "prompt jump" followed by a
"stable period" where the stable period (T) = B - hk

;\hk
, "

'_ Phys{cal Eff~~t ofnelayed,:Neutr'ons
, .

·".r

To' understand what.' is p'hysica:lly happening wewii'l look'"
at '. a simple numerical example usiil~f' a 'greatly exaggerated value
for B. This is done only for numerical simplicity and in no
way alters the qualitative results.

Assume:

= .1
.05

= 1000

B
~k =

Prior to the reactivity insertion:

Precursor
r-----~-f Bank

------------~~~900prompt1000

1 a
pre1ursors

'0' N . ()ne eutron ~F' .
Generation or ~SSlon

CJ
~---._100 delayed

} 1000

The chain reaction is being maintained at a level of 1000
neutrons per generation. Now insert 50 mk of reactivity such
that k = 1. 05:

Precursor
Bank

1000

1015
Precursors

~o_n_e_N_e_u_t,...,r_o_n-'::>---~}~on
Generatlon .r-'

(J

-

- 100 delayed

945 pror:lpt
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Even though we create 105 precursors we get only 100
delayeq. neutroJ:ls. from the ,.precursqr , bank since. it ,contains

,:precursors 'produc::ed eaJ;:'lie.r. ." - " . .. ,.
; . .. ,", .

. '~his, :ctr'ain 'proc e'E;id,s , ~.s" £,bliowf:i':

I =-1precursor

110 114

0 J1088 >fGL 100
100

1045~ fission ,.. 988 '>- 1028

0 0

If we assumt~ the output of the precursor bank does not
change for a second, we have time for one thousand prompt
generations in which time the series will converge to:

_______~~ 1900 prompt
2000

2LP(5so",
One Neu~ron.~ Fission
Generat~on· 0

-, Precursor
Bank

...._.;;...~ 100 delayed,. 52000

Thus in a v·=ry short time period we get a jump in the
prompt neutron l.=vel but power can not increase beyond-a certain
point until more precursors start to decay. Therefore, after
the prompt jump, the rate of power increase is determined by
the decay rate of the delayed neutron precursors. Calculating
the magnitude of the prompt jump for this problem using
equa tion ( 5) .
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P = 13 - ~k
P = .1 1000 = 2000

o .1 - .05

Approximate Numerical. Effect of Delayed Neutrons

Going back to the problem we solved without delayed neutrons
we shall now see what. the effect of delayed neutrons really
is.

consider a react.or with U-235 as the fuel then:

is = 0.0065
A ::: 0.1 S-1

The reactor period with ~k = 0.5 mk is:

T = e - ~k
A~k-

= 0.0065 - 0.0005
(0.1) (0.0005)

= 120 s

=P (t)

~

and the overall power function is:
t

a T
P (t) = Pc is tlk e

t
1. 08 e no

After the initia.l prompt jump to 108% of Po power increases
with a period of 12-0 s.

Figure 2 shows t.he power rise for a step insertion of
reactivity. As you can see the average lifetime approximation
(from Level 3) fails to predict the rapid initial rise in
power caused by the multiplication of prompt neutrons. This
rapid rise in power is an important consideration in the design
of all reactivity mechanisms. In order to limit any rapid
increase in power all reactivity mechanisms are designed to
limit the rate of reactivity addition.

Prompt Criticality

It may have occ'l:.rred to you to ask why we restricted .tIk
to being less than B. For one thing the equations we derived
are no longer valid but more importantly the increase in power
is no longer dependent on delayed neutrons if 6k > B. Return
to our numerical exarr,ple with a value of ~k =.15 with is = .1.

100 delayed
900 prompt 1000 x 1.15 x (1 - .1) ~ 1040 prompt
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As you see power is increasing without having to "wait"
for the delayed neutrons. This shortens the reactor response
time.

When 6k = e the reactor is critical on prompt neutrons
alone, hence the naIre "prompt critical".

Figure 3 shows reactor period versus 6k for a reactor with
a prompt lifetime of .001 seconds (i.e. the Candu reactors) •

1100

0.001 s)

~ SDS2 Trip

I t~ SDSl Trip
I

1

(rompt Only (1 =

~ U-235 (Prompt and Delayed)

.1.01

Reactivity

mk.
7 -

U-235
6

t
5 -

Prompt
Critical

4 -

3 - ~

Pu-239
2 - - -

1 -

Reactor Period, s.
Figure 3

Re~9tivity v Period
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As you can see nothing radically happens when the reactor
approaches prompt criticality, the chain reaction is simply be­
coming less dependent on the delayed neutrons, hence power is
changing more rapidly. In this regard we use the avoidance of
prompt criticality as a design limit. (SDSI trips the reactor
at a period of 10 sand SDS2 trips the reactor at a period of
4 s. Both of these are below prompt criticality, T ~ 1 s).

Also included on figure (3) is the plot of period versus
reactivity for a reactor with only Pu-239 (8 = 0.0021) as a
fuel. You will note that SDSI and SDS2 trip set points provide
adequate protection even in this situation. As we approach
equilibrium fuel in our reactors we get closer to this situation.
At equilibrium fuel prompt criticality occurs at 6k ~ U.UOj~. The
practical consequence of this is that the reactor regulating
and protection system design must be based on the worst case
which is equilibrium fuel.

Large Negative Reactivities (Reactor Trips)

The equations developed for the prompt jump are equally
valid for any insertion of negative reactivity except that
you have a prompt drop followed by a stable negative period.
Recalling that:

T = B - 6k
A~k

if:

16k l»IBI
1T ~ -~

Thus the stable reactor period will be determined by the
decay constant of the delayed neutron precursors. In fact
it will be determined by the longest lived group of precursors,
thus, the shortest reactor period possible after the prompt drop
will be -80 s. In our reactors we have a very significant
production of neutrons from the photoneutron reaction with
deuterium thus the actual period will be somewhat longer.

ASSIGNMENT

1. Define reactor period (T).

2. Write the expression for reactor period considering both
prompt and delayed neutrons.

3. Explain physically the way in which delayed neutrons
effect the time response of neutron power.
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4. Calculate reactcr power 10 seconds after a step insertion
of +2 rnk of reactivity for fresh fuel (6 = 0.0065) and for
equilibrium fuel (6 = 0.0035). Po = 50% and A = 0.1 S-l.

5. What do we measure on our reactors that is related to
reactor period? What is the relationship?

J.E. Crist


